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Mode Propagation Through a Step
Discontinuity in Dielectric
Planar Waveguide

HIROSHI SHIGESAWA, MEMBER, IEEE, AND MIKIO TSUJI, MEMBER, IEEE

Abstract —This paper presents two methods for dealing with wave
propagation through a dielectric step discontinuity at normal incidence.
One method helps to accelerate the convergence of solutions, especially for
the TM-mode problem, and the other treats efficiently the continuous
mode spectrum by introducing the Legendre transform in the case of open
waveguides. As for the former, the singular fields around the dielectric
edges are introduced in terms of direct use of their functional forms to the
boundary condition, which is fulfilled in the sense of least squares. As for
the latter, the expansion in terms of the Legendre functions is performed
for optimally divided ranges of a continuous spectrum. A number of
numerical examples prove that the methods presented herein are quite
powerful for solving the TM-mode discontinuity problems in dielectric
waveguides of both closed and open types.

I. INTRODUCTION

ISCONTINUITY problems in dielectric waveguides

of both closed and open types play an important role
in practical applications such as finite cascades of inter-
acting step discontinuities, isolated discontinuities, etc., in
integrated circuits ranging from microwave to optical fre-
quencies. As for the finite cascades, they often appear as
partial corrugations or gratings on dielectric waveguides
for use in certain sophisticated components for integrated
optics (e.g., the Bragg deflector [1] and the grating demul-
tiplexer [2]) and also for similar components in the micro-
wave to short millimeter-wave ranges (e.g., the grating filter
and the leaky-wave antenna [3]).

In a previous paper [4], we described a microwave net-
work approach to analyze such finite cascades, where the
essential problems are that of the step discontinuity, upon
which a surface wave impinges not normally but obliquely;
in addition, the continuous mode spectrum must be taken
into account in the case of open waveguide. As is well
known [5], a TE or TM mode incident obliquely on a step
discontinuity produces not only a reflected and a trans-
mitted mode of its own type, but also excites a reflected
and a transmitted mode of the other type in polarization.

For solving such a problem, one can immediately think
of applying the mode-matching method in which two sets
of normal modes in different kinds of waveguides are
matched at the discontinuity plane. Certainly, the mode-
matching method has been used straightforwardly in a
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great number of published papers [6]-[22]. However, direct

- application of this method for TM-mode discontinuity

problems often suffers from a slow rate of convergence
which may lead to inaccurate results. Therefore, we have to
develop an effective method to find the solutions for the
TM problem as well as for the TE problem, with rapid
convergence, which leads to the identical degree in the
accuracy of solutions for both types of incident mode.

As an intermediate step toward the oblique incident
problem, this paper deals with the step discontinuity in
two-dimensional planar dielectric waveguides of both closed
and open types (as shown in Fig. 1) and considers the
normal incidence of both mode types separately. For the
TE-mode incidence, the convergence is usually very fast
and it is easy to attain an accuracy of order 1073 in the
power conservation [19]-[22]. On the other hand, a slow
rate of convergence in the case of TM-mode incidence
often results from the singular behavior of the field at
dielectric edges. Many papers (for example, [6], [11], [13],
[171-[22]) have indeed discussed the TM-mode problem,
but a few [13], [19]-{22] have discussed this problem by
taking account of the edge effect. Our present interest
appropriately has close relation to Vassallo’s paper [13] in
which he presented a method based on the direct appli-
cation of the Meixner’s edge condition [23], which might
improve the convergence of solutions for a planar dielectric
waveguide of closed type. Since his approach expands the
presupposed function of singular fields into the normal
modes of the waveguide under consideration, it is neces-
sary to take a large number of expansion terms even in
case of a weak singularity. As for this problem, our paper
can be considered an extension of Vassallo’s work, but
there is a distinct difference, which will be pointed out in
Section II. A similar discussion on the edge condition, but
in a different problem, can be found in [24].

On the other hand, for the discontinuity problem in
open dielectric waveguides, one must always consider the
appreciable coupling between the discrete surface-wave
modes and waves with the continuous spectrum besides the
edge singularity. Owing to the presence of this continuous
spectrum, the discrete mode matching is intrinsically ill-
suited for dealing with discontinuity problems in open
waveguide. It is customary, however, in this class of prob-
lems to discretize the continuous spectrum by introducing
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Fig. 1. Step-discontinuity configurations in planar dielectric waveguides

of (a) closed type and (b) open type.

the Laguerre transform for the wavenumber [11]. This
transform is indeed powerful enough to get a series with
good convergence from so-called good functions, behaving
well over the entire range of the continuous spectrum; in
usual step discontinuities, however, most of the energy
carried by an incident surface wave will couple strongly to
a part of the continuous spectrum in a limited narrow
range. In such a case, the Laguerre transform often causes
the convergence difficulty. Employment of the Laguerre
polynomials in a Ritz—Galerkin variational solution is
another approach proposed by Rozzi [16]. Although this
approach is successfully applied to a TE-wave discontinu-
ity problem, it does not appear to be as readily applied to
the TM-wave case.

To circumvent such inherent difficulties associated with
the previous approaches, we propose an alternative method
[19]-[22] to discretize efficiently the continuous spectrum
in Section IIL

II. DISCONTINUITY IN A DIELECTRIC WAVEGUIDE
OF CLOSED TYPE

A. Analysis

Let us first consider a step discontinuity in a parallel-
plate waveguide that is partially dielectric filled as seen in
Fig. 1(a). The dielectric planar waveguide 1, on the left-hand
side has the thickness ¢;, and the planar guide II, on the
right-hand side, has the thickness ¢, ( <t;). We have here
two dielectric edges along the y-axis at x =1, and ¢, at
z=0, the effects of which should be taken into account
carefully in case of TM-mode incidence. Since there is no
longer any edge effect in the case of TE-mode incidence,
the rapid convergence of solutions can be easily achieved
even by means of the usual mode-matching method.
Hereafter, our interest is concentrated on the fact that the
gth TM-mode is incident normally onto the step discon-
tinuity from the left-hand side of the structure.

The usual approach, which approximates the field in
each guide by the mere truncation of an infinite series of
orthonormal modal functions, solves the boundary prob-
lem by means of mode matching. One thereby misses some
important information on the edge effect that is connected
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with neglected higher order modal functions, and suffers
from a slow rate of convergence.

To recover such information, Vassallo [13] has described
a method based on the direct application of the Meixner’s
edge condition [23], which considers the singular electric
field of the order r* near edges, where r is the distance
from an edge and —1/2 <y <0. Following his process,
such singular fields around the edges are also expanded
into a series of modal functions in the waveguide under
consideration. It will be desirable to quote here [13, eq. (5)]
in terms of our notations to show distinctly the difference
of our approach from his:

N
= 2 Vuu(8,y + R, )+R Y Vaaf(n) (1)
n=1 n>N

where 7, means the amplitude of the mth mode excited in
one guide when the gth mode, expressed by the Kronecher
delta function, is incident to a discontinuity plane from
another guide. ¥V, are defined by integrals on the modal
functions, while R,, and R are the unknown coefficients to
be solved. The function f(r) is written in terms of both the
nth modal function and the field singularity term, as
discussed in {13, Appendix A].

Equation (1) is indeed a better approximation to the true
7,, than the mere truncation expressed simply by the first
term in the right-hand side of (1), but it is clear from the
last term in the right-hand side of (1) that this approxima-
tion still depends on the complete modal expansion of the
singular field. Therefore, a good convergence and a satis-
factory accuracy in solutions may be obtained only when
summing up the series including the term f(n) in (1) is
possible for a remarkably large number of terms. However, .
it is reported [13] that there is difficulty in the summation
of such a series especially in the case of weak singularity
for a dielectric step, and little improvement is thereby
achieved in convergence.

To overcome this difficulty, our approach presented here
recovers the information of the edge effect not in terms of
a modal expansion of the singular fields, but in terms of a
direct use of its functional form. Returning now to the
problem of Fig. 1(a), let us assume the x component of the
singular electric fields locally bounded around x =t, by
|x —,|", (p=1,2 and —1/2<y,<0), and approxunate
the E component by!

EN) = X (5,0 R,)el ()
N
+R'{ e X A i,,<x>}

N

e (o)
n=

IExpressions (2) and (3) are indeed inaccurate for the waveguide fields
away from the dielectric edges, but the 7 term has significant behavior
just around the edges and rapidly goes to zero away from them. There-
fore, the magnitude of this term distant from them contributes to the total
fields with negligibly small amounts, and these expressions on the discon-
tinuity plane will be acceptable as the first trial fields.
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EN(M) = 2 T,ell ()
m=
M
; T'{ x—rn— ¥ B,;e;i,,(x)}
m=0

+T~{ ool X e ffm(x)} 3)

where e; (x) is the x component of the orthonormal
modal functions of the jth mode in the guide i, and
R,,R,R",T,,T'T" are unknown coefficients to be de-
termmed through the boundary condition.

The known amplitudes 4/,, 47/, B/, and B!/ indicate the
modal expansion coefficients of the singular fields for the
orders n < N and m < M, and are given by

d
= fo |x —1,|"h% (x) dx

A= [ = TR (x) dx (4)
0

d
B),= /0 x — 1, A% (x) dx

d
Byi= [ =l hjix(x) dx (5)

where k! (x) is the y component of the magnetlc field
correspondmg to e} ;(x) and the symbol * indicates the
complex conjugate.

It should be appreciated here that, after decomposing
the singular field into the contributions of the normal
modes below the order N or M and the rest, Vassallo’s
approach still employs the latter contribution in terms of
modal series, while ours introduces a contribution by sub-
tracting the former contribution from the functional form
itself of the singular field as seen in (2) and (3). Therefore,
our approach has only to calculate a small number of
amplitudes of (4) and (5) for n < N and m < M, respec-
tively, and does not encounter the difficulty that Vassallo’s
does.

So far, emphasis has been placed on the electric field.
Next, let us mention briefly the way of treating the mag-
netic fields Hj, (i =L1II) around the dielectric edges. The
singular electnc field of order r?, if inserted in Maxwell’s
equation, yields a constituent of higher order r*1in the
magnetic field, the amplitude of which is finite everywhere.
Therefore, such a constituent has little influence on the
rapid convergence, and is neglected for the approximated
magnetic fields H}(N) and H]'(M) in the present ap-
proach.

Finally, let us consider the boundary condition on the
discontinuity plane at z = 0. Although the rigorous condi-
tions are Ef = EI and H) = H)', the approximated fields

EXN), EH(M) HI(N) and H™(M) of (2) and (3) never
satisfy the above type of boundary conditions. We there-
fore fit the approximated fields to the boundary conditions
in the sense of least-squares [25]. For this purpose, we
define the mean-square error € for the boundary condi-
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tions, defined by the following equation;
d d
[1EL - ELPax  [1HL,— HE?dx
0 420

2 [leal dx [l

In the present problem we ought to regard E I(N ), EX(M),
H)(N), H' (M), el (x), and h} (x) as E,, Eg, H,

tan?® tan?®

€ =

- (6)

tan?

Htlan, €ins and hs respectlvely Th1s error is a function of
R,, T, R, R”, T’, and T”. We then minimize ¢ with

respect to these unknown coefficients, and solve for them
by the same procedures as described in [26]. All of the
numerical results which will appear in this paper are ob-
tained considering this type of method of field matching.

It is interesting to note that Andersen et al. [27] have
pointed out that the form of Meixner’s solution in the
time-varying case is not always correct for any configura-
tion of dielectric edges and the relevant results may be
obtained from the static case. Our cases treat the two
dielectric edges which exist close to each other in a closed
waveguide. Therefore, we think that it is difficult to find
out the correct y, values for our case from the Meixner’s
approach, and our method regards the power indices v,
(p=1,2) of (2) and (3) still as two more unknown vari-
ables when the error ¢ is minimized. ’

B. Numerical Results

In Fig. 1(a), we assume n; and n, to be 1.46 and 1.0,
respectively. Let us consider a case for which the discon-
tinuity is described by the parameters ¢, /t, =12, d/t,=
2.0, and kyd =5.0. For this structure, the TM, and TM,
modes are above cutoff in each guide; numerical discus-
sions are performed for a typical case in which the funda-
mental TM, mode is incident normally to the step from
the left-hand side of guide I. We therefore compute the
reflected and transmitted powers of TM, and TM,; modes,
the degree of power conservation (total power), and the
least mean-square error ¢ by considering a number of
modes below cutoff.

Table I(a) indicates the results obtained when only the
first terms of the right-hand side of (2) and (3) (i.e., the
summation over the discrete normal modes N and M in
regions I and II; the edge effect is neglected altogether) are
considered in our procedures, whereas Table I(b) shows the
results obtained by the same procedures as Table I(a), but
considering all of the terms in (2) and (3). We can recog-
nize clearly a remarkable difference in the approximations;
the former barely ensures the power conservation of 100.000
percent at N = 200, while the latter easily attains the same
degree of power conservation at just N = 20. Moreover, the
mean-square error ¢, less than 0.001 percent, is achieved
with N >150 for the former approxnnatlon and with N > 15
for the latter, respectively.

Such a dramatic decrease in the number N in the latter
approximation, which considers the edge singularity, has a
great value in simplifying the numerical calculations itself.
We may thereby ensure that the method presented here is
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TABLEI
REFLECTION, TRANSMISSION POWERS OF TM; AND TM; MODES,
DEGREE OF POWER CONSERVATION (TOTAL POWER), AND LEAST
MEAN-SQUARE ERROR CALCULATED FOR DIFFERENT NUMBER
N OF THE EXPANSION TERMS (IN CASE OF FIG. 1(a))

Reflected Power [ %] Transmited Power [%] Total

z

Error [%]

TMo mode TM, mode TMg mode TMi1 mode Power [ 3]
10 0.001 0.010 99.546 0.039 99.595 0 354
20 0.001 0.013 99.796 0.046 99.856 0.102
30 0.001 0.014 99.891 0.048 99.954 0.039
40 0.001 0.014 99.907 0.048 99.972 0.024
50 0.002 0.014 99.918 0.049 99.982 0.016
100 0.002 0.015 99.932 0.049 99.997 0.004
150 0.002 0.015 99.934 0.049 99.999 0.001
200 0.002 0.015 99.934 0.049 100. 000 0.000

250 0.002 0.015 99.934 0.049 100,000 0.000

(a) Present approach considering no edge singularity.

Reflected Power [ %] Transmitted Power [%] Total

N TM, mode TM,; mode TM, mode TM, mode Power [%] Error {%]
5 0.001 0.015 99.925 0.049 99,990 0.009
10 0.002 0.015 99.929 0.049 99.994 0.004
15 0.002 0.015 99.935 0.050 100.001 0.001
20 0.002 0.015 99.934 0.049 100.000 0.000
25 0.002 0.015 99.934 0.048 100.000 0.000
30 0.002 0.015 99.934 0.049 100.000 0.000

(b) Present approach considering edge singularity.

quite effective to attain a rapid convergence for the case of
TM-mode incidence.

We conclude this section with a plot of the mean-square
error ¢ as a function of N, the number of expansion terms.
It is obvious in Fig. 2 that the improvement obtained by
the method considering edge effects in terms of the func-
tional forms is quite sufficient.

III. DDISCONTINUITY IN A DIELECTRIC WAVEGUIDE

OF OPEN TYPE

A. Analysis

Let us next consider a step discontinuity in a dielectric
planar waveguide of open type as shown in Fig. 1(b). On
an open dielectric waveguide, the non-surface-wave modes
comprise a continuous spectrum, a part of which is radia-
tive, while the rest is reactive. Therefore, one must always
consider appreciable coupling between the discrete
surface-wave modes and the waves with continuous spec-
trum besides the effect of edge singularity which has al-
ready been discussed in the previous section.

It is customary, however, in this class of problem to
discretize the continuous spectrum by employing the
Laguerre transform as mentioned before. This transform is
useful for achieving the good convergence for so-called
good spectral functions behaving well over the entire range
of the continuous spectrum. In the usual step discontinuity,
however, most of the energy of an incident surface-wave
mode will couple strongly to the waves with the continuous
spectrum in a limited narrow range of the radiation part.
In such a case, it is quite difficult to get a rapid conver-
gence of solutions by means of the Laguerre transform,
even if a great number of the Gauss—Laguerre functions of
higher order are taken into account.
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We describe here a new way of overcoming this diffi-
culty. Our motivation is try to introduce a more flexible
transform for discretizing a continuous spectrum. The basic
idea is to divide the continuous spectrum into three ranges:
one corresponds to the radiation part, the second is an
optimally-scaled extent of the reactive part, and the third,
which will be disregarded here, is the rest of the reactive
part. To follow this approach, we have only to discretize
independently the spectrum in each range. To this end, one
can employ the Legendre transform for which the normal-
ized Legendre functions provide the complete set of basis
functions in each bounded range.

Now, let us consider that the gth TM surface-wave
mode is incident normally onto the step discontinuity from
the left-hand side of Fig. 1(b). Let e} ;(x), &} (x), ei(x, p),
and h'(x, p) be the orthonormal modal functions of the
jth surface-wave mode and the continuous wave in the
guide i, respectively [28]. p means the wavenumber of the
continuous wave in the x direction outside the waveguide
and covers all values from 0 to c0. As p covers the range
0<p<nyk,, wher ky=27/A,, the corresponding field
becomes radiative, while p is also allowed to fall in the
range nyk, < p < 0, in which the field becomes evanescent
along the z direction. Let us introduce a scale parameter «
to divide the latter range of p between nyk, < p < anyk,
and anyk,<p <co. If the parameter « is optimally de-
fined, one may disregard the field in the latter range, which
has no significant effect on the total field.

Assuming here that N and M surface-wave modes are
supported as the discrete modes in guide I and II, respec-
tively, the electric fields tangential to the discontinuity
plane can be expressed as follows:

N
(44
EXN) = I (8,,+ R,)eba(x)+ ["9!(p)el(x,p) dp

+ R{e,(x) = l(x) } + R"{e, ()~ g3(x)}
(7)

M
ENM)= ¥ T,el,(x)+ [ 6"(p)el(x. p) dp
m=0 Y

+T"{e, (x) = gl'(x)} + T"{e,(x) - g¥(x)}
(3)

where R,, R, R”, T,, T’, and T” are the unknown
coefficients to be determined. e ,(x), (p =1,2) denote the
x components of the singular fields around x = t,; one
type of trial functional forms for them is assumed as
follows:

(x) |x —1,]|", x<2t, 9
e (x)= . 9
’ trexp{v,(x—21,)/1,}, x>21,

where v, takes the values from —1/2 to 0 as mentioned
before, and the decaying e, ,(x) beyond x = 2¢, is assumed
so as to assure the convergence of integrations with respect
to x. Since the singular field e;, naturally includes the
identical components with the first two terms of the right-
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Fig. 2. Least mean-square error € as a function of different number N
of the expansion terms.

hand side of (7) or (8), it is needed to subtract these
components g, (i=LII, p=1 2) from the singular fields.
It is eas11y shown that gp and g are calculated by
gp(x) =

— (x)f esp(x)h *(x)dx
+f0mo Oe:Ic(X>P)dP_/(; e, (x)h*(x,p)dx (10)

(w— el (x) [ e,y (x)lx(x) dx

+f0 ° Oeil(x,p)dpfo e, (x)B)*(x, p) dx.

(11)

Now, let us expand the spectral function ¢!(p) in (7) and
(8) into the sum of proper functions defined in each range
of p. An appropriate complete set of functions is provided
by the normalized Legendre functions, and we denote the
kth Legendre function by P, {£(p)} and P,{n(p)} in the
bounded ranges 0 < p <nyky, and nyky<p < anjk, re-
spectively, where the functions £(p) and 7(p) are given by

2 1
¢(p) = noky (P - Enoko)

2 (a+1)nok,
n(p) = (a_l)noko{p— 5 } (12)

because P, (x) is the orthonormal function defined in the
range |x| <1. The orthonormal nature of P, leads to the
following expansions holding for the continuous spectra
(for example, ¢'(p) and ¢'(p) in the range 0 < p < noky):

¢'(p) = ZOR P{£(p))

w (0<p<noky) (13)
@(p) = X 778 (4(0))

where R/ and T/ are the additional unknown coefficients
to be determined; these series will be truncated, in practice,
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by K; and L, terms, respectively. As a result, we can
rewrite (7) and (8) as follows:

BN Ky Ko) = X (6,4 R)EL ()
* LR PE(0)ellxp) do

£ 5 R (n(p)}elx,p) dp

k=0 noky

+R'{e, (x)~gl(x)}
+R”{es2(x)~g2(X)}

E)EI(M7L1aL2)= Z Ten (.X)

m=0

M gl: Tt’ankon{i(p)}eiI(x,P)dp

(14)

- X T ()} e ) o

noko

+T"{ e, (x)~ gl'(x)}
+T"{ e, (x) = g5 (x)}. (15)

On the other hand, as mentioned in Section II-A, the
singular electric field given by (9) yields a constituent in
the magnetic field, the amplitude of which is finite every-
where. Assuming that such a constituent has little influence
on the convergence, we approximate the magnetic fields
H)(N,K,,K,) and H(M, L,, L,) by those belonging to
the first three terms of the right-hand side of (14) and (15).
Consequently, in the present problem, we can solve the
unknown coefficients by the same way as discussed in
Section II-A, by regarding EXN, Ky, K,), EX(M, L, L,),

H(N, K}, K,), HYM, Ly, L,), el (x), and Rl (x) as
Etlan, EX. HL ., HI e, and h,, of (6), respectively.

B. Numerical Results

In Fig. 1(b), we assume n; =146, n,=1.0, kyt;=2.5,
and t,/t,=1.2. For this structure, each guide supports
TM, and TE; modes only as the discrete modes. But, we
discuss here the case of each mode incidence normally to
the step discontinuity, and the mode coupling between
these modes does not occur [5]. First we discuss numeri-
cally the case of TM ;mode incidence from the left-hand
side of guide I. Therefore, we put g =0 and N=M =0 in
(10), (11), (14), and (15). After assuming K;=K,=L,;=L,
and the scale factor a = 7 in (14) and (15), we compute the
reflection and transmission powers of the TM,, surface-
wave mode, the radiation power, the degree of power
conservation (total power), and the least mean-square error
¢. Table II(a) indicates the results obtained for an abbrevi-
ated case which employs only the first three terms of the
right-hand side of (14) and (15) and disregards the edge
effects expressed by the fourth and fifth terms. K = K, =
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TABLE II
REFLECTION, TRANSMISSION POWERS OF TM,, SURFACE-WAVE
MOoDE, RADIATION POWER, DEGREE OF POWER CONSERVATION
(ToTAL POWER), AND LEAST MEAN-SQUARE ERROR FOR
DiFFERENT NUMBER K OF THE EXPANSION TERMS
OF THE LEGENDRE FUNCTIONS

Reflected Transmtted Radiation Power Total

K

Power(TM,) Power(TM,) Reflected Transmitied Power [%]
1 0¢.000 98 384 0.027 0.069 98.481 1.107
2 0.000 98.483 0.024 0.072 98.579 1.019
3 0.000 98 474 0.019 0.062 98.555 0.976
4 0 000 98.807 0.006 0.080 98.889 0.753
5 0.000 99.053 0.010 0.070 99,134 0.659
6 0.001 99.569 0.015 0.070 99.655 0.435
7 0.001 99.531 0.018 0.068 99.617 0.356
8 0.001 99.530 0.019 0.068 99.618 0.329
9 0.001 99.530 0.019 0.068 99.618 0.326

(a) Present approach considering no edge singularity.

Reflected Transmitted Radiation Power Total

K power(TMy) Power(TM,) TReflected Transmitied Power [§] orror L8
4 0.001 99.822 0.039 0.075 99.937 0.117
5 0.002 99 972 0.034 0.085 100.093 0.065
6 0.002 99.873 0.028 0.080 99.982 0.054
7 0.001 99.849 0.030 0.081 99.962 0.038
8 0.001 99.838 0.025 0.076 99.940 0.033
9 0.001 99.848 0.027 0.078 99.954 0.032

* (b) Present approach considering edge singularity.

K, means the number of terms used in the Legendre
expansion. For K =8, the above quantities, which com-
pletely characterize the discontinuity, have reached their
convergence values. However, the magnitudes obtained for
the total power (99.6 percent) and the error e (0.329
percent) are unsatisfactory for practical applications, espe-
cially in the cascade connection of such discontinuities,
and also they deteriorate the confidence in the convergence
values obtained.

The same quantities are now computed by the identical
procedure, by taking account of the edge singularity. The
results are shown in Table II(b). As expected, it is clear
that this approximation improves the results shown in
Table Il(a) for the magnitudes of the total power and the
error € by one figure or more. Therefore, we may conclude
that the results obtained by the last method will be more
reliable than those of Table Il(a), though imperfect conver-
gence is seen in some of quantities of Table 1I(b) even at
K =9. However, the magnitude of fluctuations seems to be
small enough so that the present approximation is justified
in practice, and, on account of this, the following results
are computed for K =09.

Fig. 3 shows the reflection, transmission, and radiation
powers as a function of ¢, /t,. The relative transmission
power is 100 percent at ¢, /t; =1.0, as it should, since the
discontinuity disappears. As ¢, /¢, decreases, the transmis-
sion power goes to zero, while the radiation power reaches
almost 100 percent and the reflection power goes to its
small limiting value, since the surface-wave mode is no
longer guided in guide 11 for ¢, /1, = 0. Fig. 4 shows the
radiation patterns calculated by the steepest descent method
[9], where the peak value is normalized to unity for each
radiation pattern. The axes along 8§ = 0° and 90° coincide
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Fig. 3. Reflection, transmission, and radiation powers as a function of

t, /1, for the TM; mode incident from guide I.
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Fig. 4. Radiation patterns for different ratio ¢, /1, as a parameter (1n
the case of Fig. 3).

with the z and x directions, respectively. Since the TM,,
mode has the £, component symmetric with respect to the
y—2z plane at x = 0, the radiation occurs into the end-fire
(z axis) direction for 7, /t;=0. As 1, /1, increases, the
angle 8., of the radiation peak changes from zero to a
limiting angle of elevation on account of the step discon-
tinuity. Also, the complicated side lobes appear with in-
creasing 6, ,.. This may be attributed to the edge effects.
Finally, for the sake of comparison, let us consider the
case of a TE surface-wave mode. As shown in Fig. 1(b), the
guide under consideration has a ground plane at the y-z
plane, so that the fundamental TE mode becomes a TE;
mode. Therefore, in this case, ¢, n, and m should start
from unity in (10), (11), (14), and (15), instead of from zero
as seen in the TM incident case. As mentioned at the
beginning of this section, the structure under consideration
propagates only the TE, surface-wave mode, and we put
g=1and N= M =1. Table III indicates the results, which
are calculated for the same structure as employed in Table
I1. This problem no longer poses any difficulty caused by
the edge singularity. We thereby have only to follow the
Legendre transform in the same fashion as mentioned in
Section III-A. It is seen from Table III that the present
approach easily ensures the power conservation of 99.999
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TABLE III
REFLECTION, TRANSMISSION, POWERS OF TE; SURFACE-WAVE
MODE, RADIATION POWER, DEGREE OF POWER CONSERVATION
(ToTAL POWER), AND LEAST MEAN-SQUARE ERROR FOR
DIFFERENT NUMBER K OF THE EXPANSION TERMS
OF THE LEGENDRE FUNCTIONS

Reflected Transmitted Radiation Power Total

X Power(TE:) Power(TE,) Reflected Transmilted Power (3] Errer [¥
1 0.108 98.925 0.0490 0.220 99,293 0.740
2 0.133 99.012 0.018 0.478 99,621 0.382
3 0.113 99,122 0.005 0.534 99,774 0.231
4 0.111 99,207 0.008 0.550 99.876 0.128
5 0.109 99.269 0.006 0.552 99,937 0.067
6 0.110 99,307 0.007 0.554 99,979 0.023
7 0.111 98 326 0.007 0.555 99,999 0.004
8 0.111 99,326 0.007 0.555 99,999 0.002
9 0.111 99.326 0.007 0.555 99,999 0.001

This case does not encounter any edge effect.
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Fig. 5. Reflection, transmission, and radiation powers as a function of
t, /'y, for the TE; mode incident from guide L.

percent and the least mean-square error € less than 0.001
percent at K = 9. Fig. 5 shows each power as a function of
t,/t,; and the radiation patterns are shown in Fig. 6. Since
the TE; surface-wave mode is a higher mode in the wave-
guide shown by the inset of Fig. 5, this mode in guide II
becomes cutoff at ¢,/t; =0.6, which is shown by the
dashed line in Fig. 5. Thus, in the cutoff region (0 <1¢, /¢,
< 0.6), most of the incident power is radiated. Since the
TE, mode has the E, component antisymmetric with re-
spect to the y—z plane, radiation at ¢, /t; = 0 occurs into
an elevated angle (8, = 28°), and as ¢, /t; increases, 0,
decreases to its minimum value 10°, which occurs at the
cutoff value ¢,/t;=0.6. Then, after going through a
minimum, 6, reaches .a limiting angle 8, =18°, as
t, /t, increases. As of now, the authors have no reasonable
way to explain well these features physically.

IV. CoNcLUSION

The step discontinuity in planar dielectric waveguides of
both closed and open types has been treated for the
TM-mode incidence as well as for the TE-mode incidence.
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Fig 6. Radiation patterns for different ratio r, /1, as a parameter (in
the case of Fig. 5).

The authors have emphasized the discontinuity problem
associated with the TM mode at normal incidence. As for
the field singularity, the present approach first assumes the
singular fields locally bounded around the dielectric edges
and introduces such singular components into the field
expression in terms of direct use of their functional forms,
and finally fits the fields in the two guides at the discon-
tinuity plane in the sense of least-squares. As for the
continuous spectrum, we divide it into three ranges, one of
which is disregarded here. Then the spectral function in
each range is expanded in terms of the Legendre functions.
A number of numerical results are presented for the TM-
mode problem in comparison with the TE-mode problem.
These results demonstrate that significant improvement in
convergence and also in the accuracy of results are achieved
even for the TM-mode case.

The same technique can also be applied to other im-
portant TM discontinuity problems in dielectric wave-
guides.
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