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Mode Propagation Through a Step
Discontinuity in Dielectric

Planar Waveguide
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Abstract —This paper presents two methods for deafing with wave

propagation through a dielectric step discontinuity at normal incidence.

One method helps to accelerate the convergence of solutions, especially for

the TM-mode problem, and the other treats efficiently the continuous

mode spectrum by introducing the Legendre transform in the case of open

waveguides. As for the former, the singular fields around the dielectric

edges are introduced in terms of direct use of their funetionaf forms to the

boundary condition, which is fulfilled in the sense of least squares. As for

the latter, the expansion in terms of the Legendre functions is performed

for optimally divided ranges of a continuous spectrum. A number of

numericaf examples prove that the methods presented herein are quite

powerfuf for solving the TM-mode discontinuity problems in dielectric

waveguides of both closed and open types.

I. INTRODUCTION

D ISCONTINUITY problems in dielectric waveguides

of both closed and open types play an important role

in practical applications such as finite cascades of inter-

acting step discontinuities, isolated discontinuities, etc., in

integrated circuits ranging from microwave to optical fre-

quencies. As for the finite cascades, they often appear as

partial corrugations or gratings on dielectric waveguides

for use in certain sophisticated components for integrated

optics (e.g., the Bragg deflector [1] and the grating demul-

tiplexer [2]) and also for similar components in the micro-

wave to short millimete~-wave ranges (e.g., the grating filter

and the leaky-wave antenna [3]).

In a previous paper [4], we described a microwave net-

work approach to analyze such finite cascades, where the

essential problems are that of the step discontinuity y, upon

which a surface wave impinges not normally but obliquely;

in addition, the continuous mode spectrum must be taken

into account in the case of open waveguide. As is well

known [5], a TE or TM mode incident obliquely on a step

discontinuity produces not only a reflected and a trans-

mitted mode of its own type, but also excites a reflected

and a transmitted mode of the other type in polarization.

For solving such a problem, one can immediately think

of applying the mode-matching method in which two sets

of normal modes in different kinds of waveguides are

matched at the discontinuity plane. Certainly, the mode-

matching method has been used straightforwardly in a
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great number of published papers [6]-[22]. However, direct

application of this method for TM-mode discontinuity

problems often suffers from a slow rate of convergence

which may lead to inaccurate results. Therefore, we have to

develop an effective method to find the solutions for the

TM problem as well as for the TE problem, with rapid

convergence, which leads to the identical degree in the

accuracy of solutions for both types of incident mode.

As an intermediate step towm”d the oblique incident

problem, this paper deals with the step discontinuity in

two-dimensional planar dielectric waveguides of both closed

and open types (as shown in Fig. 1) and considers the

normal incidence of both mode types separately: For the

TE-mode incidence, the convergence is usually very fast

and it is easy to attajn an accuracy of order 10-5 in the

power conservation [19]–[22]. On the other hand, a slow

rate of convergence in the case of TM-mode incidence

often results from the singular behavior of the field at

dielectric edges. Many papers (for example, [6], [11], [13],

[17] -[22]) have indeed discussed the TM-mode problem,

but a few [13], [19] -[22] have discussed this problem by

taking account of the edge effect. Our present interest

appropriately has close relation to Vassallo’s paper [13] in

which he presented a method based on the direct appli-

cation of the Meixner’s edge condition [23], which might

improve the convergence of solutions for a planar dielectric

waveguide of closed type. Since his approach expands the

presupposed function of singular fields into the normal

modes of the waveguide under consideration, it is neces-

sary to take a large number of expansion terms even in

case of a weak singularity. As for this problem, our paper

can be considered an extension of Vassallo’s work, but

there is a distinct difference, which will be pointed out in

Section II. A similar discussion on the edge condition, but

in a different problem, can be found in [24].

On the other hand, for the discontinuity problem in

open dielectric waveguides, one must always consider the

appreciable coupling between the discrete surface-wave

modes and waves with the continuous spectrum besides the

edge singularity. Owing to the presence of this continuous

spectrum, the discrete mode matching is intrinsically ill-

suited for dealing with discontinuity y problems in open

waveguide. It is customary, however, in this class of prob-

lems to discretize the continuous spectrum by introducing
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Fig. 1. Step-discontinuity configurations in planar dielectric waveguides
of (a) closed type and (b) open type.

the Laguerre transform for the wavenumber [11]. This

transform is indeed powerful enough to get a series with

good convergence from so-called good functions, behaving

well over the entire range of the continuous spectrum; in

usual step discontinuities, however, most of the energy

carried by an incident surface wave will couple strongly to

a part of the continuous spectrum in a limited narrow

range. In such a case, the Laguerre transform often causes

the convergence difficulty. Employment of the Laguerre

polynomials in a Ritz-Galerkin variational solution is

another approach proposed by Rozzi [16]. Although this

approach is successfully applied to a TE-wave discontinu-

ity problem, it does not appear to be as readily applied to

the TM-wave case.

To circumvent such inherent difficulties associated with

the previous approaches, we propose an alternative method

[19] -[22] to discretize efficiently the continuous spectrum

in Section III.

II. DISCONTINUITY IN A DIELECTRIC WAVEGUIDE

OF CLOSED TYPE

A. Analysis

Let us first consider a step discontinuity in a parallel-

plate waveguide that is partially dielectric filled as seen in

Fig. l(a). The dielectric planar waveguide I, on the left-hand

side has the thickness tl, and the planar guide II, on the

right-hand side, has the thickness t*(< tl).We have here

two dielectric edges along the y-axis at x = tl and t2 at

z = O, the effects of which should be taken into account
carefully in case of TM-mode incidence. Since there is no

longer any edge effect in the case of TE-mode incidence,

the rapid convergence of solutions can be easily achieved

even by means of the usual mode-matching method.

Hereafter, our interest is concentrated on the fact that the

q th TM-mode is incident normally onto the step discon-

tinuity from the left-hand side of the structure.

The usual approach, which approximates the field in

each guide by the mere truncation of an infinite series of

orthonormal modal functions, solves the boundary prob-

lem by means of mode matching. One thereby misses some

important information on the edge effect that is connected

with neglected higher order modal functions, and suffers

from a slow rate of convergence.

To recover such information, Vassallo [13] has described

a method based on the direct application of the Meixner’s

edge condition [23], which considers the singular electric

field of the order rY near edges, where r is the distance

from an edge and – 1/2 < y <O. Following his process,

such singular fields around the edges are also expanded

into a series of modal functions in the waveguide under

consideration. It will be desirable to quote here [13, eq. (5)]

in terms of our notations to show distinctly the difference

of our approach from his:
,.

N

~=1 n>N

where T~ means the amplitude of the m th mode excited in

one guide when the q th mode, expressed by the Kronecher

delta function, is incident to a discontinuity plane from

another guide. V~~ are defined by integrals on the modal

functions, while R ~ and ~ are the unknown coefficients to

be solved. The function ~(n) is written in terms of both the

n th modal function and the field singularity term, as

discussed in [13, Appendix A].

Equation (1) is indeed a better approximation to the true

T~ than the mere truncation expressed simply by the first

term in the right-hand side of (l), but it is clear from the

last term in the right-hand side of (1) that this approxima-

tion still depends on the complete modal expansion of the

singular field. Therefore, a good convergence and a satis-

factory accuracy in solutions may be obtained only when

summing up the series including the term /(n) in (1) is

possible for a remarkably large number of terms. However,

it is reported [13] that there is difficulty in the summation

of such a series especially in the case of weak singularity

for a dielectric step, and little improvement is thereby

achieved in convergence.

To overcome this difficulty, our approach presented here

recovers the information of the edge effect not in terms of

a modal expansion of the singular fields, but in terms of a

direct use of its functional form. Returning now to the

problem of Fig. l(a), let us assume the x component of the
singular electric fields locally bounded around x = \P by

lx – t,l’~, (p =1,2 and – 1/2< y, < O), and approximate

the Ex component byl

~=o

(
N+R“ IX – t21Y2 – ~ ~~e~n(x)

)

(2)
~=lj

1Expressions (2) and (3) are indeed inaccurate for the waveguide fields
away from the dielectric edges, but the rY term has significant behavior
just around the edges and rapidly goes to zero away from them, There-
fore, the magnitude of this term distant from them contributes to the totat
fields with negligibly smatl amounts, and these expressions on the discon-

tinuity plane will be acceptable as the first trial fields,
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{

M

)

+T” lx– t21y2– z B~e&(~) (3)
~=()

where e:, (x) is the x component of the orthonormal

modal functions of the jth mode in the guide i, and

R., R’, R“, T~, T’, T“ are unknown coefficients to be de-

termined through the boundary condition.

The known “amplitudes A;; A;, B~, and B; indicate the

modal expansion coefficients of the singular fields for the

orders n G N and m < M, and are given by

JA;= ‘IX – fllyl/Zfi(X) dX

4’=;IX-WWXW (4)
o

J
B;= ‘IX – ~llY1h;;(X) dx

w=~lx+,l’’wwa
o

(5)

where h;, (x) is the y component of the magnetic field

corresponding to e~j( x ) and the symbol * indicates the

complex conjugate.

It should be appreciated here that, after decomposing

the singular field into the contributions of the normal

modes below the order N or J4 and the rest, Vassallo’s

approach still employs the latter contribution in terms of

modal series, while ours introduces a contribution by sub-

tracting the former contribution from the functional form

itself of the singular field as seen in (2) and (3). Therefore,

our approach has only to calculate a small number of

amplitudes of (4) and (5) for n < N and m < M, respec-

tively, and does not encounter the difficulty that Vassallo’s

does.

So far, emphasis has been placed on the electric field.
Next, let us mention briefly the way of treating the mag-

netic fields H;, (z’ = I, 11) around the dielectric edges. The

singular electric field of order r~, if inserted in Maxwell’s

equation, yields a constituent of higher order ry + 1 in the

magnetic field, the amplitude of which is finite everywhere.

Therefore, such a constituent has little influence on the

rapid convergence, and is neglected for the approximated

magnetic fields H;(N) and H;( Tf) in the present ap-

proach.

Finally, let US consider the boundary condition on the

discontinuity plane at z = O. Although the rigorous condi-

tions are E; = E: and H;= H:, the approximated fields

E:(N), E;1(A4), H;(N), and H~(~) of(2) and(3) never

satisfy the above type of boundary conditions. We there-

fore fit the approximated fields to the boundary conditions

in the sense of least-squares [25]. For this purpose, we

define the mean-square error 6 for the boundary condi-

tions, defined by the following equation:

In the present problem, we ought to regard E;(N), E~1(i14),

Hi(N), H?(M), ejq(x), and h~~(x) as -&,, Et%,> H&

Hfl ein, and h in, respectively. This error is a function oftm?
R ~, T~, R’, R“, T’, and T“. We then minimize c with

respect to these unknown coefficients, and solve for them

by the same procedures as described in [26]. All of the

numerical results which will appear in this paper are ob-

tained considering this type of method of field matching.

It is interesting to note that Andersen et al. [27] have

pointed out that the form of ‘Meixner’s solution in the

time-varying case is not always correct for any configura-

tion of dielectric edges and the relevant results may be

obtained from the static case. Our cases treat the two

dielectric edges which exist close to each other in a closed

waveguide, Therefore, we think that it is difficult to find

out the correct yP values for our case from the Meixner’s

approach, and our method regards the power indices ~P

(p= 1,2) of (2) and (3) still as two more unknown vari-

ables when the error c is minimized.

B. Numerical Results

In Fig. l(a), we assume nl and no to be 1.46 and 1.0,

respectively. Let us consider a case for which the discon-

tinuity is described by the parameters tJt2 = 1.2, d/tl =

2.0, and kod = 5.0. For this structure, the TMO and TMI

modes are above cutoff in each guide; numerical discus-

sions are performed for a typical case in which the funda-

mental TM o mode is incident normally to the step from

the left-hand side of guide I. We therefore compute the

reflected and transmitted powers of TMO and TMI modes,

the degree of power conservation (total power), and the

least mean-square error c by considering a number of

modes below cutoff.

Table I(a) indicates the results obtained when only the

first terms of the right-hand side of (2) and (3) (i.e., the

summation over the discrete normal modes N and A4 in

regions I and II; the edge effect is neglected altogether) are

considered in our procedures, whereas Table I(b) shows the

results obtained by the same procedures as Table I(a), but

considering all of the terms in (2) and (3). We can recog-

nize clearly a remarkable difference in the approximations;

the former barely ensures the power conservation of 100.000

percent at N= 200, while the latter easily attains the same

degree of power conservation at just N = 20. Moreover, the

mean-square error c, less than 0.001 percent, is achieved

with N >150 for the former approximation and with N >15

for the latter, respectively.

Such a-dramatic decrease in the number N in the latter

approximation, which considers the edge singularity, has a

great value in simplifying the numerical calculations itself.

We may thereby ensure that the method presented here is
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TABLE I

REFLECTION, TRANSMISSION POWERS OF TM ~ AND TMI MODES,
DEGREE OF POWER CONSERVATION (TOTAL POWER), AND LEAST

MEAN-SQUARE ERROR CALCULATED FOR DIFFERENT NUMBER

N OF THE EXPANSION TERMS (IN CASE OF FIG. l(a))

—
Reflected POWI’ [ %]

N——
Transmuted Power [ $I_ Total

TM, mode TM, mode TM o mode TM I mode’ Power [ %1
Error [ %1

10 0.001 0.010 99.546 0.039 99.595 0 354

20 0.001 0.013 99.796 0.046 99.856 0,102

30 0.001 0.014 99.891 0.048 99.954 0.039

40 0,001 0.014 99.907 0.048 99.972 0.024

50 0.002 0.014 99,918 0.049 99,982 0.016

100 0,002 0.015 99.932 0.049 99.997 0.004

150 0,002 0.015 99.934 0.049 99.999 0.001

200 0,002 0.015 99.934 0.049 100,000 0.000

250 0.002 0,015 99.934 0.049 100,000 0.000

(a) Present approach considering no edge singularity.

N
Reflected Power [ %] Transmitted Power [ %] Total

TM o mode TM I mode TM, mode TM, mode— Power [ %]
Error [ %]

5 0.001 0,015 99.925 0.049 99.990 0.009

10 0.002 0.015 99.929 0.049 99.994 0.004

15 0.002 0,015 99.935 0.050 100.001 0.001

20 0.002 0.015 99.934 0.049 100.000 0.000

25 0.002 0.015 99.934 0.049 100.000 0.000

30 0.002 0.015 99.934 0.049 100.000 0.000

(b) Present approach considering edge singularity.

quite effective to attain a rapid convergence for the case of

TM-mode incidence.

We conclude this section with a plot of the mean-square

error c as a function of N, the number of expansion terms.

It is obvious in Fig. 2 that the improvement obtained by

the method considering edge effects in terms of the func-

tional forms is quite sufficient.

III. DISCONTINUITY IN A DIELECTRIC WAVEGUIDE

OF OPEN TYPE

A. Analysis

Let us next consider a step discontinuity in a dielectric

planar waveguide of open type as shown in Fig. l(b). On

an open dielectric waveguide, the non-surface-wave modes

comprise a continuous spectrum, a part of which is radia-

tive, while the rest is reactive. Therefore, one must always

consider appreciable coupling between the discrete

surface-wave modes and the waves with continuous spec-

trum besides the effect of edge singul anty which has al-

ready been discussed in the previous section.

It is customary, however, in this class of problem to

discretize the continuous spectrum by employing the

Laguerre transform as mentioned before. This transform is

useful for achieving the good convergence for so-called

good spectral functions behaving well cwer the entire range

of the continuous spectrum. In the usual step discontinuity,

however, most of the energy of an incident surface-wave

mode will couple strongly to the waves with the continuous

spectrum in a limited narrow range of the radiation part.

In such a case, it is quite difficult to get a rapid conver-

gence of solutions by means of the Laguerre transform,

even if a great number of the Gauss–Li~guerre functions of

higher order are taken into account.

We describe here a new way of overcoming this diffi-

cult y. Our motivation is try to introduce a more flexible

transform for discretizing a continuous spectrum. The basic

idea is to divide the continuous spectrum into three ranges:

one corresponds to the radiation part, the second is an

optimally-scaled extent of the reactive part, and the third,

which will be disregarded here, is the rest of the reactive

part. To follow this approach, we have only to discretize

independently the spectrum in each range. To this end, one

can employ the Legendre transform for which the normal-

ized Legendre functions provide the complete set of basis

functions in each bounded range.

Now, let us consider that the q th TM surface-wave

mode is incident normally onto the step discontinuity from

the left-hand side of Fig. l(b). Let e~j(x), h~j(x), e~(x, p),

and h; (x, p) be the orthonormal modal functions of the

j th surface-wave mode and the continuous wave in the

guide i, respectively [28]. p means the wavenumber of the

continuous wave in the x direction outside the waveguide

and covers all values from O to co. As p covers the range

O G p c noko, wher k.= 27r/A ~, the corresponding field

becomes radiative, while p is also allowed to fall in the

range n Ok. < p < co, in which the field becomes evanescent
along the z direction. Let us introduce a scale parameter a.

to divide the latter range of p between n ~ko < p < an Ok.

and cmoko < p < co. If the parameter a is optimally de-

fined, one may disregard the field in the latter range, which

has no significant effect on the total field.

Assuming here that N and A4 surface-wave modes are

supported as the discrete modes in guide I and II, respec-

tively, the electric fields tangential to the discontinuity

plane can be expressed as follows:

E;(N) = fj (t3nq+Rn)ejn(x) +~”OkO+l(p)e~(x, p)dp
?Z=o o

+R’{e$l(x) -gf(x)) +R’’{e,2(x)-g~(x)]

(7)

+T’{e,,(x) –g~l(x)} +T’’{e,2(x)–g?(~)}
(8)

where R ~, R’, R“, T~, T’, and T” are the unknown

coefficients to be determined. e,P (x), ( p =1,2) denote the

x components of the singular fields around x = tp;one

type of trial functional forms for them is assumed as

follows :

{

lx – tpl~p, x < 2tp
(9)‘fP(x) = t~exp{YP(x–2t~)/t~}7

x > 2tp

where yP takes the values from – 1/2 to O as mentioned

before, and the decaying e,P(x) beyond x = 2tP is assumed

so as to assure the convergence of integrations with respect

to x. Since the singular field e~P naturally includes the

identical components with the first two terms of the right-



SHIGESAWA AND TSUJI : DIELECTRIC PLANAR WAVEGUIDE 209

10

I!

k~d.50, n,.146 m.1 O

—.— 1,. 0 ,dlt>=2.O
------ t,. d ,d/tz=20

— tJt, .1 2 ,d/t, =20

~ wtthout edg+ condltmn

w

k
: 0,01
u

1;

Ii

0001

‘\

o 20 40 60 80 100 liU 140 160 180
N

Fig. 2. Least mean-square error c as a function of different number N

of the expansion terms.

hand side of (7) or (8), it is needed to subtract these

components g;, (Z= I, 11, p =1,2) from the singular fields.

It is easily shown that g; and g; are calculated by

(11)

Now, let us expand the spectral function +’(p) in (7) and

(8) into the sum of proper functions defined in each range

of p. An appropriate complete set of functions is provided

by the normalized Legendre functions, and we denote the

kth Legendre function by Pk{ t(p)} and P~{ q(p)} in the

bounded ranges 0< p < noko and noko < p < anoko, re-

spectively, where the functions ~(p) and q(p) are given by

HP) =
&(’-in’’k”)

2

{

(a+l)noko

‘(p) = (rx-l)noko ‘- 2 }
(12)

because Pk(x) is the orthonormal function defined in the

range 1x1<1. The orthonormal nature of P~ leads to the

following expansions holding for the continuous spectra

(for example, o’(P) and @II(p) in the range 0< p < noko):

k=O

I (O<p< noko) (13)

@II(p) = fj T/’P,{&(p)}
[=0

where R; and T,’ are the additional unknown coefficients

to be determined; these series will be truncated, in practice,

by K1 and L1 terms, respectively. As a result, we can

rewrite (7) and (8) as follows:

+ R’(e,,(x)– g}(x)]

+R’’(e$,(x)–g$(x)) (14)

+ T’(e,,(x)– g~’(x)]

+ T“{eJx)- g~’(x)). (15)

On the other hand, as mentioned in Section II-A, the

singular electric field given by (9) yields a constituent in

the magnetic field, the amplitude of which is finite every-

where. Assuming that such a constituent has little influence

on the convergence, we approximate the magnetic fields

H;(N, Kl, K2) and H~(A4, Ll, L2) by those belonging to

the first three terms of the right-hand side of (14) and (15).

Consequently, in the present problem, we can solve the

unknown coefficients by the same way as discussed in

Section II-A, by regarding E;(N, ICI, K2), E~l(~, Ll, Lz),

HI(N, Kl, K2), H~(Af, Ll, Lz), e&(x), and k~~(x) as

E~~, E& H&, H&, ei., and hi. of (6), respectively.

B. Numerical Results

In Fig. l(b), we assume nl =1.46, no= 1.0, kotl = 2.5,

and t~/tz=1.2. For this structure, each guide supports

TMO and TEI modes only as the discrete modes. But, we

discuss here the case of each mode incidence normally to

the step discontinuity, and the mode coupling between

these modes does not occur [5]. First we discuss numeri-

cally the case of TMo-mode incidence from the left-hand

side of guide I. Therefore, we put q = O and N = M = O in

(10), (11), (14), and (15). After assuming K1 = K2 = L1 = Lz

and the scale factor a = 7 in (14) and (15), we compute the

reflection and transmission powers of the TMO surface-

wave mode, the radiation power, the degree of power

conservation (total power), and the least mean-square error

c. Table II(a) indicates the results obtained for an abbrevi-

ated case which employs only the first three terms of the

right-hand side of (14) and (15) and disregards the edge

effects expressed by the fourth and fifth terms. K = K1 =
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TABLE II
REFLECTION, TRANSMISSION POWERS OF TMO SURFACE-WAVE

MODE, RADIATION POWER, DEGREE OF POWER CONSERVATION

(TOTAL POWER), AND LEAST MEAN-SQUARE ERROR FOR

DIFFERENT NUMBER K OF THE EXPANSION lkwzs

OF THE LEGENDRE FUNCTIONS

~ Reflected Transmitted Rad,atlon Power Total

Power( TM,) Power(TM o) Reflected Transmitted Power I %1
Error [ %]

1 0.000 98 384 0.021 0.069 98.481 1.107

, 0,000 98.483 0,024 0.072 98.579 1.019

3 0.000 98 474 0.019 0.062 98,555 0.976

4 0 000 98.807 0.006 0.080 98.889 0.753

5 0.000 99.053 0.010 0.070 99.134 0.659

6 0,001 99.569 0.015 0.070 99.655 0.435

7 0.001 99.531 0.018 0.066 99.617 0.356

8 0.001 99.530 0.019 0.068 99.618 0.329

9 0.001 99.530 0.019 0.068 99.618 0.326

(a) Present approach considering no edge singularity.

~ Reflected Transmitted Radiation Power Total
Error [ %1

Power( Tkl o) Power( Tkl o) Reflected Transmitted Power [ %1

4 0.001 99,822 0.039 0,075 99.937 0.117

5 0.002 99 972 0.034 0.085 100.093 0.065

6 0.002 99.873 0.028 0.080 99.982 0.054

7 0.001 99.849 0.030 0.081 89.962 0.038

8 0,001 99.838 0,025 0.076 89.940 0.033

9 0,001 99.848 0,027 0.078 99.954 0.032

(b) Present approach considering edge singularity.

Kz means the number of terms used in the Legendre

expansion. For K = 8, the above quantities, which com-

pletely characterize the discontinuity, have reached their

convergence values. However, the magnitudes obtained for

the total power (99.6 percent) and the error t (0.329

percent) are unsatisfactory for practical applications, espe-

cially in the cascade connection of such discontinuities,

and also they deteriorate the confidence in the convergence

values obtained.

The same quantities are now computed by the identical

procedure, by taking account of the edge singularity. The

results are shown in Table II(b). As expected, it is clear

that this approximation improves the results shown in

Table II(a) for the magnitudes of the total power and the

error c by one figure or more. Therefore, we may conclude

that the results obtained by the last method will be more

reliable than those of Table II(a), though imperfect conver-

gence is seen in some of quantities of Table II(b) even at

K =9. However, the magnitude of fluctuations seems to be

small enough so that the present approximation is justified

in practice, and, on account of this, the following results

are computed for K = 9.

Fig. 3 shows the reflection, transmission, and radiation

powers as a function of t2/tl. The relative transmission

power is 100 percent at t~/tl= 1.0, as it should, since the

discontinuity disappears. As t2/tl decreases, the transmis-

sion power goes to zero, while the radiation power reaches

almost 100 percent and the reflection power goes to its

small limiting value, since the surface-wave mode is no

longer guided in guide II for t */tl = O. Fig. 4 shows the

radiation patterns calculated by the steepest descent method

[9], where the peak value is normalized to unity for each

radiation pattern. The axes along 6’ = 00 and 900 coincide
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Fig. 3. Reflection, transmission, and radiation powers as a function of
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Fig. 4. Radiation patterns for different ratio t2/tlas a parameter (m
the case of Fig. 3).

with the z and x directions, respectively. Since the TMO

mode has the EX component symmetric with respect to the

y – z plane at x = O, the radiation occurs into the end-fire

(z axis) direction for t2/tl = O. As t2/tl increases, the

angle d~= of the radiation peak changes from zero to a

limiting angle of elevation on account of the step discon-

tinuity. Also, the complicated side lobes appear with in-

creasing 6~=. This may be attributed to the edge effects.

Finally, for the sake of comparison, let us consider the

case of a TE surface-wave mode. As shown in Fig. l(b), the

guide under consideration has a ground plane at the y – z

plane, so that the fundamental TE mode becomes a TEI

mode. Therefore, in this case, q, n, and m should start

from unity in (10), (11), (14), and (15), instead of from zero

as seen in the TM incident case. As mentioned at the

beginning of this section, the structure under consideration

propagates only the TEI surface-wave mode, and we put

q = 1 and N = i14 = 1. Table III indicates the results, which

are calculated for the same structure as employed in Table

II. This problem no longer poses any difficulty caused by

the edge singularity. We thereby have only to follow the

Legendre transform in the same fashion as mentioned in

Section III-A. It is seen from Table III that the present

approach easily ensures the power conservation of 99.999
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TABLE III

REFLECTION, TRANSMISSION, POWERS OF TE1 SURFACE-WAVE

MODE, RADIATION POWER, DEGREE OF POWER CONSERVATION

(TOTAL POWER), AND LEAST MEAN-SQUARE ERROR FOR

DIFFERENT NUMBER K OF THE EXPANSION TERMS

OF THE LEGENDRE FUNCTIONS

~ Reflected Transmitted Radmtlon Power Total
Power( TE, ) Power (T E,) Reflected Ti-anmmtted Power [%]

Error [%1

1 0.108 98.925 0.040 0.220 89.293 0.740

2 0.133 99.012 0.018 0.478 89.621 0.382

3 0.113 99.122 0.005 0.534 99.774 0.231

4 0.111 99.207 0.008 0.550 99.876 0,128

5 0.109 99.269 0.006 0.552 89.937 0.067

6 0.110 99.307 0.001 0.554 99.919 0.023

7 0.111 89 326 0.007 0.555 89.989 0.004

8 0.111 99.326 0.007 0.555 99.998 0.002

9 0.111 99.326 0.007 0.555 99.099 0.001

This case does not encounter any edge effect

ool~ ~1 02 03 04 0.5 ;6 07 08 0.9
t>lt?

Fig. 5. Reflection, transmission, and radiation powers as a function of

tz /tl, for the TE1 mode incident from guide I.

percent and the least mean-square error ~ less than 0.001

percent at K =9. Fig. 5 shows each power as a function of

t*/tl and the radiation patterns are shown in Fig. 6. Since

the TEI surface-wave mode is a higher mode in the wave-

guide shown by the inset of Fig. 5, this mode in guide II

becomes cutoff at t2/tl= 0.6, which is shown by the

dashed line in Fig. 5. Thus, in the cutoff region (O< t2/tl

s 0.6), most of the incident power is radiated. Since the
TEI mode has the EY component antisymmetric with re-

spect to the y – z plane, radiation at t ~/tl = O occurs into

an elevated angle (Ore= s 28° ), and as t2/tlincreases, d~=

decreases to its minimum value 100, which occurs at the

cutoff value t*/tl= 0.6. Then, after going through a

minimum, f3~= reaches a limiting angle fl~us 18°, as

t2/tl increases. As of now, the authors have no reasonable

way to explain well these features physically.

IV. CONCLUSION

The step discontinuity in planar dielectric waveguides of

both closed and open types has been treated for the

TM-mode incidence as well as for the TE-mode incidence.

1

Fig 6. Radiation patterns for different ratio r2/tlas a parameter (in

the case of Fig. 5).

The authors have emphasized the discontinuity problem

associated with the TM mode at normal incidence. As for

the field singularity, the present approach first assumes the

singular fields locally bounded around the dielectric edges

and introduces such singular components into the field

expression in terms of direct use of their functional forms,

and finally fits the fields in the two guides at the discon-

tinuity plane in the sense of least-squares. As for the

continuous spectrum, we divide it into three ranges, one of

which is disregarded here. Then the spectral function in

each range is expanded in terms of the Legendre functions.

A number of numerical results are presented for the TM-

mode problem in comparison with the TE-mode problem.

These results demonstrate that significant improvement in

convergence and also in the accuracy of results are achieved

even for the TM-mode case.

The same technique can also be applied to other im-

portant TM discontinuity problems in dielectric wave-

guides.
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